
LAB 4.1: CREATE A PERSONAL GROUP

Keyboard Time: 1 mins, Automation Wait Time: 0 mins

Scenarios: Instructor-Led, Self-Paced

1. While in ‘classgroup’, near the top right of the page, Click New

subgroup (button)

2. Name the group with the mask firstname_lastname so that

it will be unique, easy to remember and easy for others to

identify. (For example if your gitlab user id is @supercoolcoder
and your avatar URL is https://gitlab.com/supercoolcoder,

name your subgroup ‘supercoolcoder’). From here on in the

exericses this will be referred to as ‘yourpersonalgroup’

3. Click Create Group.

4. On the left hand navigation Click Se�ings

5. Next to “General”, Click Expand

6. For “Visibility Level”, Check Public.

7. Record or remember ‘yourpersonalgroup’ =



Warning

Skip this lab if you already have a personal group created by a

previous lab.

 

Must Be Public

Projects that are used by the GitLab Agent must be public

when the agent registration is done in a project other than

the one the deployment happens from and when the image

being sourced is not using a stored docker login secret.

 

https://gitlab.com/supercoolcoder

Workshop Version: v1.3.3

 

IMPORTANT

Throughout the remaining exercises you will replace the text

yourpersonalgroup with this actual group name.

 

http://localhost:1313/040_gitlab_gitops_via_agent/section_overview.html
http://localhost:1313/040_gitlab_gitops_via_agent/042_prepare_gitops_app.html

LAB 4.2: PREPARE THE APPLICATION

PROJECT

Keyboard Time: 20 mins, Automation Wait Time: 2 mins

Scenarios: Instructor-Led, Self-Paced

 Click Here To Expand a Visual Overview of The GitLab Application Project

Pipeline



GitOps Convention

A common GitOps convention is to seperate Application Build

repositories from Environment Deployment repositories. This lab

sets up the Environment Deployment repository to follow this

convention.

 

Target Outcomes

1. Create a GitOps Application Build project from a template.

2. Create and publish (in a group CI/CD variable) a token that

allows the Environment Deployment project to read the
container images in the Application Build project.

 

Warning

Before continuning make sure to use DNSChecker.com to check

if both the Load Balancer DNS Name and Load Balancer IP

.nip.io have propagated through global DNS and wait (or

troubleshoot) if they have not.

 

Tip

This project auto-increments images with a simple semantic

i (l t t d) Y l f i�

 

1. While in ‘yourpersonalgroup’ (created in a prior lab) Click New

project (button) and then Click Import project

2. On the ‘Import project’ page, Click Repository by URL

3. On the next page, for ‘Git repository URL’ Paste
h�ps://gitlab.com/guided-explorations/gl-k8s-
agent/gitops/apps/hello-world.git

4. In ‘Project name’ Type Hello World (may already be defaulted
to this)

5. Scroll down to ‘Visibility Level’

6. Click Public.

7. Near the bottom of the page Click Create project (button)

8. On the left navigation bar, Click CI/CD => Pipelines

9. In the upper right of the page, Click Run pipeline (button)

10. On the ‘Run pipeline page’, leave the defaults and in the lower

left of the page Click Run pipeline (button)

The code is designed to increment an image version from

the container registry of your project. If no image is found, it
starts at version 0.0.1.

11. [Automation wait: ~1 min] Wait for the pipeline to complete

successfully.

version (prereleases not supported). You can also force a speci�c

version number and tell it which part of the version number to

auto-increment.

Must Be Public

Projects that are used by the GitLab Agent must be public

when the agent registration is done in a project other than

the one the deployment happens from and when the image

being sourced is not using a stored docker login secret.

 

https://gitlab.com/guided-explorations/gl-k8s-agent/gitops/apps/hello-world.git

12. On the left navigation panel, Click Packages & Registries =>

Container Registry

13. On the Container Registry page click the item ending in “/main”

You should see a version tag, a git short sha tag and a

latest-prod tag that all have the same value for “Digest”

14. On the left navigation bar, Click CI/CD => Pipelines

15. In the upper right of the page, Click Run pipeline (button)

16. On the ‘Run pipeline page’, Change the value of the variable

“NEXTVERSION” to 1.0.0 (replace the text ‘increment-existing-

image-version’)

17. Click Run pipeline (button)

18. [Automation wait: ~1 min] Wait for the pipeline to complete

successfully.

19. On the left navigation bar, Click Packages & Registries =>

Container Registry

20. On the Container Registry page click the [line item ending in
“/main”]

Among the tags you should see a 0.0.1 version tag and a

1.0.0 version tag.

Note: the next time the pipeline runs it will increment 1.0.0
to 1.0.1 automatically because it will read the current version

from the latest image.

Created To Be A Template

This source project followed several speci�c principles that

makes it this easy to use as a template:

1. Soft codes most of the paths to be self referential to the

 

Create a Token To Read The Container
Registry

project path name.

2. When looking in the project container registry for the last

image version, it handles an error in reading the container

image as an indicator this is the �rst run and then forces

the version number to 0.0.0 before it is incremented and a

new container is generated. Subsequent builds then �nd the

latest-prod image.

3. Avoids use of the ‘latest’ tag as it is very common and might

be created by other unknown build processes that are

integrated later.

Group or Project Access Tokens For High Trust Group

Hierarchies

For the next steps you will create a Project Deployment Token so

that the Environment Deployment project can read the container

image of this Application Build project. If you have a paid GitLab

license, a project or group level ‘Access Token’ can give the same

access to all container registries in a group heirarchy. This works

well if there is high trust between all Application Build and

Environment Deployment projects as there are fewer credentials

granted at an appropriate level.

 

1. While in ‘yourpersonalgroup/hello-world’ in the left navigation,

Click Se�ings => Repository (button)

2. Next to ‘Deploy tokens’ Click Expand

3. Under ‘New deploy token’, for Name, Type
ReadContainerRegistry

4. Under ‘Scopes (select at least one)’, Select read_registry (DO
NOT SELECT read_repository)

5. Click Create deploy token

6. Use copy and paste to record the following in a temporary

document (do not hand type tokens):

READ_REG_USER = [user id from token generation UI]
READ REG TOKEN [t k f t k ti UI]

Page Reloaded With Update - Don’t Close

Notice the same page reloads, but at the top of the screen

now has a grey box containing the token information.

IMPORTANT - Do not navigate to another page in this

browser as this is the only time you can see the token. You

will have to create a new token if you leave the page.

 

http://localhost:1313/040_gitlab_gitops_via_agent/images/registry_read_token.png

READ_REG_TOKEN = [token from token generation UI]

7. In a NEW browser tab, open ‘yourpersonalgroup’ (the group

level - not the hello-world project)

8. On the left navigation, Click Se�ings => CI/CD

9. To the right of ‘Variables’, Click Expand

10. Click Add variable

11. For Key, Type READ_REG_USER (it is usually best to copy this
name from this exercise rather than type it)

12. Copy the Value for READ_REG_USER from your temporary

document, Paste [the Clipboard contents]

13. Under Flags, Deselect Protect variable

14. Click Add variable (button)

15. Click Add variable (button on page - this is not a duplicate

instruction)

16. For Key, Type READ_REG_TOKEN (it is usually best to copy this

name from this exercise rather than type it)

17. Copy the Value for READ_REG_TOKEN from your temporary
document, Paste [the Clipboard contents]

18. Under Flags, Deselect Protect variable

19. Under Flags, Select Mask variable

20. Click Add variable

You should now have two variables in ‘yourpersonalgroup’

Verify Your Location

It is very easy to accidentally create these at the project level.

The token is created in the project, but the variables MUST be

at the GROUP level for them to be visible to the Environment

Deployment project you will create in the next lab.

 

that contains READ_REG_USER and READ_REG_TOKEN with

the values from the Deploy Token creation.

Workshop Version: v1.3.3

 

Accomplished Outcomes

1. Create a GitOps Application Build project from a template.

2. Create and publish (in a group CI/CD variable) a token that

allows the Environment Deployment project to read the

container images in the Application Build project.

 

http://localhost:1313/040_gitlab_gitops_via_agent/041_create_a_personal_group.html
http://localhost:1313/040_gitlab_gitops_via_agent/043_prepare_the_env_deploy_project.html

LAB 4.3: PREPARE THE ENVIRONMENT

DEPLOYMENT PROJECT

Keyboard Time: 25 mins, Automation Wait Time: 5 mins

Scenarios: Instructor-Led, Self-Paced



GitOps Conventions

1. A common GitOps convention is to seperate Application

Build repositories from Environment Deployment

repositories. This lab sets up the Environment Deployment

repository to follow this convention.

2. Completely constructed manifests are stored in a repository

for easy human reading, visibility and source control

managed state. This project creates such manifests under

two conditions:

1. when the source code of this project is altered,

2. when a new version of the Application Build container

is detected or speci�ed.

 

Target Outcomes

1. Create a GitOps Environment Deployment project from a

template.

2. Con�gure it to monitor the Application Build project for
new images.

3. Create a token so that the CI job can write back the

constructed manifests back to it’s own project.

4. Do a dry run to see if the manifests update as expected.

 

 Click Here To Expand a Visual Overview of The GitLab Environment Deployment

Project Pipeline

1. While in ‘yourpersonalgroup’ (created in a prior lab) Click New
project (button) and then Click Import project

2. On the ‘Import project’ page, Click Repository by URL

3. On the next page, for ‘Git repository URL’ Paste
h�ps://gitlab.com/guided-explorations/gl-k8s-
agent/gitops/envs/world-greetings-env-1.git

4. In ‘Project name’ Type World Greetings Env 1 (likely already be

defaulted to this)

5. Scroll down to ‘Visibility Level’

6. Click Public.

7. Near the bottom of the page Click Create project (button)

8. When the import is complete, you will be placed in the default
landing page of the project.

4. Do a dry run to see if the manifests update as expected.

Must Be Public

Projects that are used by the GitLab Agent must be public

when the agent registration is done in a project other than

the one the deployment happens from and when the image

being sourced is not using a stored docker login secret.

 

Group or Project Access Tokens For High Trust Group

Hierarchies

For the next steps you will create a Token so that the

Environment Deployment project can read the container

image of this Application Build project. If you have a paid

GitLab license, a group level ‘Access Token’ can give the

same access to all container registries in a group heirarchy.

This works well if there is high trust between all Application

Build and Environment Deployment projects as there are

 

https://gitlab.com/guided-explorations/gl-k8s-agent/gitops/envs/world-greetings-env-1.git

fewer credentials granted at an appropriate level.

Instructor-Led Classrooms / Self-Paced Participant Choice

1. Instructor-Led Classroom: Please ask the instructor
whether to use Token Option 1: Using a Project Access

Token (Paid Licenses Only Feature) or Token Option 2:

Using a Personal Access Token (PAT)

2. Self-paced: Try Token Option 1: Using a Project Access

Token (Paid Licenses Only Feature) �rst. If your instance

does not have a speci�c GitLab paid license feature you will

be directed to Token Option 2: Using a Personal Access
Token (PAT).

 

Token Option 1: Using a Project Access Token (Paid Licenses

Only Feature)

IMPORTANT: Requires a paid GitLab license, even an ultimate

trial will not have the Project Level Access Token Feature. The
project menu choice Se�ings => Access Tokens will not exist.

You will need to use “Token Option 2” below.

 

http://localhost:1313/040_gitlab_gitops_via_agent/images/project_write_token.png

1. While in ‘yourpersonalgroup/world-greetings-1’ (created in a

prior lab), on the left navigation, Click Se�ings => Access
Tokens

This menu option will not exist if you do not have a paid

GitLab license. You will need to use “Token Option 2”

below.

2. Under ‘Add a project access token’, for Token name, Type
WriteRepository

3. Under ‘Select a role’, Select Maintainer

4. Under ‘Select scopes’

1. Select read_repository (DO NOT SELECT read_registry)

2. Select write_repository(DO NOT SELECT
write_registry)

5. Click Create project access token (button)

6. Use copy and paste to record the following in a temporary

document (do not hand type tokens):

PROJECT_COMMIT_TOKEN = [project access token

from UI]

7. On the left navigation, Click Project Information =>

Members

8. In the search prompt Type WriteRepository

Page Reloaded With Update - Don’t Close

Notice the same page reloads, but at the top of the screen

now has a grey box containing the token information.

IMPORTANT - Do not navigate to another page in this

browser as this is the only time you can see the token. You

will have to create a new token if you leave the page.

 

The user list should return one entry

9. In the listing, under “WriteRepository”, copy the user name

that starts with “project_” and ends with “_bot” - do not
include the @ sign.

10. In the previous temporary document, record:

PROJECT_COMMIT_USER = [the user id you just
copied]

Token Option 2: Using a Personal Access Token (PAT)

1. In the upper right of the page Click [your Avatar icon] and

then Click Edit pro�le

2. On the left naviagion, Click Access Tokens

3. Under ‘Add a personal access token’, for Token name, Type
WriteRepository

4. Under ‘Select scopes’

1. Select read_repository
2. Select write_repository

5. Click Create personal access token (button)

 

In Shared class groups Other Participants Have Access to

This PAT

If you are in a shared classgroup environment (including an

asynchonous and long lived ones where other students work

at other times than yourself), this PAT will be visible to

everyone who has access to classgroup. If you are using a

production GitLab user id - this step will give repository read

and write access to every repository your user id has access

to.

 

Page Reloaded With Update - Don’t Close

Notice the same page reloads, but at the top of the screen

 

1. In a NEW browser tab, open the project
‘yourpersonalgroup/world-greetings-env-1’ again (this time we

are at the PROJECT level).

2. On the left navigation, Click Se�ings => CI/CD

3. To the right of ‘Variables’, Click Expand

4. Click Add variable

5. For Key, Copy and Paste PROJECT_COMMIT_TOKEN

6. In the Value �eld Copy and Paste [the temporary document
value for PROJECT_COMMIT_TOKEN]

7. Under Flags, Deselect Protect variable

8. Under Flags, Select Mask variable

9. Click Add variable

10. To add another variable, Click Add variable

11. For Key, Copy and Paste PROJECT_COMMIT_USER

12. In the Value �eld Copy and Paste [the temporary document

value for PROJECT_COMMIT_USER]

13. Under Flags, Deselect Protect variable

14. Click Add variable

6. Record the following in a temporary document:

PROJECT_COMMIT_TOKEN = [personal access token
from UI]

PROJECT_COMMIT_USER = [your gitlab user id
without the ‘@’ and without the path]

now has a grey box containing the token information.

IMPORTANT - Do not navigate to another page in this

browser as this is the only time you can see the token. You

will have to create a new token if you leave the page.

14. Click Add variable

27. In a new browser tab, open your ‘yourpersonalgroup/hello-

world’ Project. (IMPORTANT: not the same project you are in
now)

28. On the left navigation panel, Click Packages & Registries =>

Container Registry

29. Next to the line item ending in “/main”, Click [the Clipboard

icon]

30. IMPORTANT: Switch back to ‘yourpersonalgroup/world-

greetings-env-1’ Project

31. In the left navigation, Click Repository => Files

32. On the upper right of the Project page, Click Web IDE

33. In the �les list, Click .gitlab-ci.yml

34. Under ‘variables:’ Find IMAGE_NAME_TO_MONITOR

35. In the quoted value, Remove the existing value

36. Paste your copied image path

The result should be something like
IMAGE_NAME_TO_MONITOR:

“registry.gitlab.com/somegroups/classgroup/yourpersonalgroup/hel

world/main”

37. Click Create commit…

Check Contents

Among the existing variables in the ‘yourpersonalgroup/world-

greetings-env-1’ project, you should have the two new variables

PROJECT_COMMIT_TOKEN and PROJECT_COMMIT_USER.

These permissions are least privilege, in part, because the CI/CD

Variables are only published at the project level.

 

38. Select Commit to main branch (change from “Create a new

branch”)

39. Click Commit

40. In the very bottom left, immediately after the text ‘Pipeline’
Click [the pipeline number which is preceeded with a #] (Or

on the left navigation Click CI/CD => Pipelines and Click [the

status badge] or [pipeline #] for the latest running pipeline)

41. Expand the Downstream pipeline with the great than arrow

(>).

Wait for it

The pipeline id link may take up to 30 seconds to appear as the

CI job has to kick off before it displays.

 

Some Possible CI Errors

Possible error messages (not an exhaustive list):

can be caused by:

a badly formed value in IMAGE_TO_MONITOR in world-

greetings-env-1/.gitlab-ci.yml

the variables READ_REG_USER and READ_REG_TOKEN

being incorrectly named,

at the wrong group level or

 

level=fatal msg="authenticating creds for
\"registry.gitlab.com\": Requesting bear token: invalid
status code from registry 403 (Forbidden)”
.

level=fatal msg="error logging into
\"registry.gitlab.com\": invalid username/password"

42. [Automation wait: ~3 min] Watch the pipeline complete

through the ‘update-staging-manifests’ job.

43. The update-staging-manifests job should complete

successfully.

44. To get back to the Web IDE, Click [the browser back bu�on]

45. Click [the browser refresh bu�on]

46. In the �les list on the left Click manifests > hello-

world.staging.yaml

47. Search for - image:

48. The image reference should be the registry pointer to your

Application Project, followed by the latest-prod image version

(“1.0.0” if you only built the Application Project twice, maybe
higher if you did more builds)

having invalid values or accidental swapping of the

values (e.g. User Id in READ_REG_TOKEN)

READ_REG_USER starting with @ (this should be

left off)

having incorrect permissions in the token (should
be “read_registry”, not “read_repository”)

The error message:

remote: GitLab: You are not allowed to push code

to protected branches on this project. ! [remote
rejected] main -> main (pre-receive hook declined)

error: failed to push some refs to

can be caused by:

You did not select ‘Maintainer’ for the token role when

setting up the repository write token above.

Be sure you refreshed the browser

51. In the �les list on the left Click manifests > hello-
world.production.yaml

52. Search for - image:

53. The image version tag does not match staging. (If all labs were

done as described it should say
registry.gitlab.com/_replace-with-hello-world-service-container-regi

)

54. In a NEW browser tab, open ‘yourpersonalgroup/world-
greetings-env-1’ again.

Shortcut - right click the project heading in the left

navigation and Click Open Link in New Tab)

55. In the left navigation Click CI/CD => Pipelines

56. Find the last non-skipped pipeline and Click it’s [Status

badge] or [Pipeline #] to open the pipeline.

57. Expand the Downstream pipeline with the great than arrow
(>).

NOTE: Depending on your screen width, you may need to

use the horizontal scroll bar under the pipeline to �nd the

update-production-manifests job.

58. Next to the update-production-manifests job, Click [the play
bu�on]

59. [Automation wait: ~1 min] Wait until the update-production-

manifests job has a green check next to it.

Only Staging Manifest Has Changed So Far

In the next steps you will observe that the production manifest

has not change yet because you have not approved the

deployment to production yet.

 

60. In the browser tabs, Switch back to [the Web IDE tab]

61. Click [the browser refresh bu�on]

62. In the �les list on the left Click manifests > hello-
world.production.yaml

63. Search for - image:

64. The image reference and version tag should match the staging
manifest (hello-world.staging.yaml) which should be the

latest-prod tagged image in the Hello World Application Build

project.

Tip

The manifests are not yet monitored by the GitLab Agent, but

once they are, the action of updating them in the project is all

that is necessary for the GitLab Agent to �nd them and update

the Kubernetes Cluster to match the manifest.

 

Created To Be A Template

This source project followed several speci�c principles that

makes it this easy to use as a template:

1. Soft codes most of the paths to be self referential to the

project path name.

2. When looking in the project container registry for the last

image version, it relies on the exact named variables for the

authentication token that were setup as part of the

Application Build project.

3. It relies on several of the variables that were con�gured at

the classgroup level for the Kubernetes Agent integration.

 

Accomplished Outcomes

1. Create a GitOps Environment Deployment project from a

template.

 

Workshop Version: v1.3.3

 

2. Con�gure it to monitor the Application Build project for

new images.

3. Create a token so that the CI job can write back the

constructed manifests back to it’s own project.

4. Do a dry run to see if the manifests update as expected.

http://localhost:1313/040_gitlab_gitops_via_agent/042_prepare_gitops_app.html
http://localhost:1313/040_gitlab_gitops_via_agent/044_link_and_test_repositories.html

LAB 4.4: LINK AND TEST PROJECTS

Keyboard Time: 5 mins, Automation Wait Time: 3 mins

Scenarios: Instructor-Led, Self-Paced

Scheduled Pipeline Model

1. In ‘yourpersonalgroup/world-greetings-env-1’ Click CI/CD =>
Schedules

2. On the upper right of the page, Click New schedule (button)

3. Under Description Type CheckForNewContainerVersion

4. Leave all other items at their defaults.

5. Near the bottom left of the page, Click Save pipeline

schedule

Normally you would take time to create one or more
schedules speci�c to your desired frequency.

6. On the right of CheckForNewContainerVersion Click [the play

bu�on]



Target Outcomes

1. Link the projects using a scheduled pipeline.

 

Tip

These methods of linking the projects are loosely coupled. The

bene�ts of this approach are described in

Loose Project Coupling

 

https://gitlab.com/groups/guided-explorations/gl-k8s-agent/gitops/-/wikis/home#loose-project-coupling

bu�on]

7. On the left navigation, Click CI/CD => Pipelines

8. On the latest pipeline Click [the Status badge] or [the
pipeline #]

9. Wait for the pipeline to complete.

10. If you did not perform any extra builds on the Application
Project, the “deploy” job will have a failed status and the

pipeline will have a status of “Passed”

[Extra Credit] Pipeline Subscription Model

Failed 'deploy' job is OK

The deploy job status is ‘failed’ because no child pipeline jobs

are scheduled because there has not been a new container

published since the last run (and no changes were made to the

Environment Deployment Project package manifests). GitLab

considers it a failure when a parent pipeline fails to create a

child pipeline, but we’ve marked this job “allowed_to_fail” which

gives the Pipeline status of “Passed” (because it is the most

ef�cient way to only run the manifest builds when there is

actually a change we care about.)

 

Accomplished Outcomes

1. Link the projects using a scheduled pipeline.

 

Instructor Led Classroom

If you are in an Instructor-Led course, do not do [Extra Credit]

exercises after this point.

 

Instructor Led Classroom

If you are in an Instructor-Led course, do not do [Extra Credit]
exercises including this one.

 

Pipeline subscriptions allow an Environment Deployment Project

to trigger nearly immediately after the Application Project
completes a build.

1. Open ‘yourpersonalgroup/hello-world’

2. In the browser URL bar, copy the URL path without the

domain. For example if the browser url is
https://gitlab.com/group1/myuser/hello-world you would copy

‘group1/myuser/hello-world ’

3. In a NEW browser tab, open ‘yourpersonalgroup/world-
greetings-env-1’

4. Click Se�ings => CI/CD

5. Next to Pipeline subscriptions, Click Expand

6. Under Project path, Paste [the path copied from the hello-

world project]

7. Click Subscribe

8. Next to Pipeline subscriptions, Click Expand

[Extra Credit] Run Pipeline With
NEXTVERSIONTOUSE Variable To Specify
Version

This method can also be used to roll back an environment.

Warning

If you are in an instructor-led workshop, please ask the

instructor before performing this lab as it could affect

workshop timing or the stability of additional assigned labs. If

used in production this method would not be paired with any

auto-update mechanism above because that mechanism would

dynamically install the latest.

 

https://gitlab.com/group1/myuser/hello-world

1. Open ‘yourpersonalgroup/world-greetings-env-1’

2. On the left navigation, Click CI/CD => Pipelines
3. In the upper right of the page, Click Run pipeline (button)

4. Under Variables, Type NEXTVERSIONTOUSE over ‘Input variable key’
5. On the same line, Type 0.0.1 over ‘Input variable value’

6. In the lower left of the page Click Run pipeline (button)

7. Wait for the pipeline to complete successfully.
8. In a NEW browser tab, open ‘yourpersonalgroup/world-greetings-env-1’ in

the Web IDE.
9. In the �les list on the left Click manifests > hello-world.staging.yaml

10. Search for - image:

11. The image reference should point to the version “0.0.1”
12. In the left navigation Click CI/CD => Pipelines

13. Find the last non-skipped pipeline and Click it’s [Status badge] or
[Pipeline #] to open the pipeline.

14. Expand the Downstream pipeline with the great than arrow (>).

15. Next to the update-production-manifests job, Click [the play bu�on]
16. Wait until the update-production-manifests job has a green check next to

it.
17. Switch back to [the Web IDE tab]

18. Click [the browser refresh bu�on]
19. In the �les list on the left Click manifests > hello-world.production.yaml

20. Search for - image:

21. The image reference and version tag should match the staging manifest
(“0.0.1”)

[Extra Credit] Create an MR with
NEXTVERSIONTOUSE File To Specify
Version

Warning

If you are in an instructor-led workshop, please ask the
instructor before performing this lab as it could affect

workshop timing or the stability of additional assigned labs. This

section is just to let you know that you can create a Merge

Request that creates or updates a �le called

NEXTVERSIONTOUSE that only contains the desired version on

the �rst and only line in the �le. This enables MR review by as

many people as necessary to gather approvals before

environment deployments are performed If you have previously

 

Workshop Version: v1.3.3

 

environment deployments are performed. If you have previously

done MRs in GitLab, you could do this procedure to experience

an MR approval based work�ow in an Environment Deployment

Project.

http://localhost:1313/040_gitlab_gitops_via_agent/043_prepare_the_env_deploy_project.html
http://localhost:1313/040_gitlab_gitops_via_agent/045_setup_gitops_pull_agent.html

LAB 4.5: SETUP THE GITOPS CD PULL

AGENT

Keyboard Time: 10 mins, Automation Wait Time: 5 mins

Scenarios: Instructor-Led, Self-Paced



GitOps Conventions

1. Monitoring manifests by an agent running in a Kubernetes

cluster. This lab con�gures the GitLab Agent to monitor the

manifests in this repository.

 

Target Outcomes

1. Con�gure the Kubernetes Agent to monitor the CI

constructed kubernetes manifests.

2. Observe the initial deployment of staging and production
via tailing the Kubernetes Agent log and the appearance of

the target environments.

 

Warning

For instructor-led classes, this portion will be done by the

instructor.

If you are not in an instructor-led course, perform the lab as
described.

 

Done By Instructor for Instructor-Led Courses 

1. Logon the cluster administration machine =>

Instructions for SSM Session Manager for EKS

2. Run the following command to tail the kubernetes agent

log while deployments are happening:

kubectl logs -f -l=app=gitlab-agent -n gitlab-agent

Leave this view open as you will be instructed to consult it

to see the deployment logging activity when the GItLab

Agent pulls and processes the kubernetes manifest.

3. In a web browser Navigate to classgroup/cluster-
management

4. Near the upper right of the page, Click Web IDE (button)

5. Navigate to the �le .gitlab/agents/spotazuseast2-
agent/con�g.yml

6. Add the following to the �le only once:

7. Under “gitops:manifest_projects:” add as below - replacing
classgroup and _yourpersonalgroup_ with the

actual names for your project. Ensure indenting and

“gitops:manifest_projects” should only appear once in the
entire �le.

For Instructors: add one of these sections per participant.

Ensure indentation is perserved.

gitops:
 manifest_projects:

 - id: _classgroup_/_yourpersonalgroup_/world-greetings-
env-1
 default_namespace: default
 paths:
 - glob: '/manifests/**/*.yaml'

http://localhost:1313/090_appendices/tuning_and_troubleshooting.html#using-the-eks-bastion-for-cluster-administration-with-kubectl-and-helm

11. Watch the previously opened view of the GitLab Agent log for
deployment activity.

For Instructor-Led: the instructor may have this view

displayed for everyone

12. To watch the progress, navigate to

classgroup/yourpersonalgroup/world-greetings-env-1

8. Final result should be something like this (including
indentation - with repeating “id” sections for each

participant if in a classroom):

9. Click Create commit…

10. Select Commit to master branch (change from “Create a

new branch”)

11. Click Commit

g y
 reconcile_timeout: 3600s # 1 hour by default

 dry_run_strategy: none # 'none' by default
 prune: true # enabled by default
 prune_timeout: 360s # 1 hour by default
 prune_propagation_policy: foreground # 'foreground' by
default
 inventory_policy: must_match # 'must_match' by default

gitops:
 manifest_projects:
 - id: _classgroup_/_yourpersonalgroup_/world-greetings-
env-1
 default_namespace: default
 paths:
 - glob: '/manifests/**/*.yaml'
 reconcile_timeout: 3600s # 1 hour by default
 dry_run_strategy: none # 'none' by default
 prune: true # enabled by default
 prune_timeout: 360s # 1 hour by default
 prune_propagation_policy: foreground # 'foreground' by
default
 inventory_policy: must_match # 'must_match' by default

13. Click Deployments => Environments

14. [Automation wait: ~3 min] Keep refreshing until staging
deployment activities complete.

15. [Automation wait: ~3 min] Wait after the status shows

complete…

16. On the ‘staging’ line, to the right, Click Open

You can see the staging deployed application.

17. In the browser tabs, Click [the tab with the Environments
page]

18. On the ‘production’ line, to the right, Click Open

You can see the production deployed application

19. If there an error indicating there is no site yet, keep refreshing
the browser window until the site displays.

Warning

For all GitOps mode projects, when the deployment shows

complete in the Environments page, it only means the

manifests are completely setup, the Gitlab Agent for

Kubernetes still has to �nd and deploy the changed

manifests

 

Warning

For all GitOps mode projects, when the deployment shows

complete in the Environments page, it only means the manifests

are completely setup, the Gitlab Agent for Kubernetes still has to

�nd and deploy the changed manifests. Also note that on the

very �rst time the agent is con�gured to monitor your manifests

- all environments are deployed. From this point forward the

manifests will be updated sequentially and will require approval

for production.

 

Workshop Version: v1.3.3

 

Critical Mindfulness: Only Pull Deployment In Environment

Deployment Project

Subsequent labs will be adding many Runner Based jobs to

enable security scanning and dynamic environments. However,

the deployment of this application will always be accomplished

by a Pull Deployment through the GitLab Agent as you have seen

in this lab. You may consult the job log (to see a manifest

commit only) and/or the Kubernetes Agent log to verify this.

 

Accomplished Outcomes

1. Con�gure the Kubernetes Agent to monitor the CI
constructed kubernetes manifests.

2. Observe the initial deployment of staging and production

via tailing the Kubernetes Agent log and the appearance of
the target environments.

 

http://localhost:1313/040_gitlab_gitops_via_agent/044_link_and_test_repositories.html
http://localhost:1313/040_gitlab_gitops_via_agent/046_update_app_project.html

LAB 4.6: UPDATE THE APPLICATION

BUILD PROJECT AND DEPLOY TO

PRODUCTION

Keyboard Time: 20 mins, Automation Wait Time: 5 mins

Scenarios: Instructor-Led, Self-Paced

In this Lab you will update the background color of the application

and track the progress of the automation through both repositories
and both environments.

1. Open ‘yourpersonalgroup/hello-world’

2. In the left navigation, Click Repository => Files

3. On the upper right of the Project page, Click Web IDE

4. Navigate to the �le src/microwebserver.py

5. Around line 11, locate the text
<BODY style="background:lightsalmon">



Target Outcomes

Observe an end-to-end application change:

1. Update the background color of the application

2. Track the progress of the automation through the

Application Build project and

3. Through both environments of the Environment

Deployment project using the background page color.

 

6. Change the color after the word background: to lightgreen

Result: <BODY style="background:lightgreen">

If you need a different color, other available color values

are listed here

7. Click Create commit…

8. Select Commit to main branch (not selected by default)

9. Click Commit

10. In the very bottom left, immediately after the text ‘Pipeline’

Click [the pipeline number which is preceeded with a #]

11. [Automation wait: ~2 min] Wait for the pipeline to complete.

12. Click Packages & Registries => Container Registry

13. Click [the line ending in ‘/main’]

14. Scan for the latest-prod tag

It should have been built moments ago. There should also

be a new version tag with the same value for ‘Digest’

15. Open ‘yourpersonalgroup/world-greetings-env-1’ project.

16. Click CI/CD => Schedules

17. On the right side of schedule called
‘CheckForNewContainerVersion’, Click [the play bu�on]

Accomplished Outcome

You just observed the automatic creation of a new

production ready container based on the normal

development activity of changing the application �les.

 

https://www.w3.org/wiki/CSS/Properties/color/keywords

If the schedule is missing, simply Click CI/CD => Pipelines

=> Run Pipeline = and then => Run Pipeline

18. On the left navigation, Click CI/CD => Pipelines

19. Open the most recent non-skipped pipeline by clicking [the

pipeline Status badge] or [the pipeline #]

20. Expand the Downstream pipeline - next to the deploy job,
Click [the small right arrow]

21. [Automation wait: ~3 min] Wait for the ‘update-staging-

manifests’ job to complete successfully.

22. In the pipeline, Click update-staging-manifests

23. Search the job log (manually or with your brower’s ‘in page

search’ feature) for the text “Changes to be committed” (near
the bottom)

24. In the left navigation, Click Repository => Files

25. In the main page body, in the �les and directories list, Click
manifests

26. Click hello-world.staging.yaml

27. Find - image:

28. Note the version number at the very end of the image string

should match the image registry version you just saw. Keep

this version in mind so you can compare to production in the
next steps

Observation

This job only did a commit back to the World Greetings

Environment 1 project - it did not do any CD push

operations. Since we are also using CI processes in this

workshop it can be easy to mistakenly think this job pushed

the changes, rather than the GitLab Agent in the cluster

pulling them.

 

next steps .

29. Click [the browers back bu�on]

30. Click hello-world.production.yaml

31. Find - image:

32. Click Deployments => Environments

33. [Automation wait: ~3 min] Keep refreshing until staging

deployment activities complete.

O th ‘ t gi g’ li t th ight Cli k O

Tip

The version differences between the current state of these

two manifests is what explains the results you will see

when viewing the active environments in the next steps.

 

Warning

For all GitOps mode projects, when the deployment shows

complete in the Environments page, it only means the

manifests are completely setup, the Gitlab Agent for

Kubernetes still has to �nd and deploy the changed

manifests.

 

Warning

If you are in an instructor-led workshop, the instructor

may need to access the cluster for you. If you were to

run into unusual deployment problems, you would need to
login to the Kubernetes Cluster and run the below

command. To do this, login to the EKS Bastion host the

same was as was done in “Prep Lab 2.3: Use GitLab K8s

Agent to Integrate The Cluster with GitLab” to install the
GitLab Agent. Then run this command
kubectl logs -f -l=app=gitlab-agent -n gitlab-agent

For common errors and more troubleshooting information
visit Troubleshooting the GitLab agent for Kubernetes

 

https://docs.gitlab.com/ee/user/clusters/agent/troubleshooting.html

34. On the ‘staging’ line, to the right, Click Open

You should see that the staging environment is now the

new color.

35. To approve the production deployment, in the left navigation,
Click CI/CD => Pipelines

36. Open the most recent non-skipped pipeline by clicking [the

pipeline Status badge] or [the pipeline #]

37. Next to the deploy job, Click [the small right arrow]

38. Locate the update-production-manifests job

You may have to horizontally scroll right to see this �nal job.

40. Click [the play bu�on in a circle]

41. [Automation wait: ~3 min] Keep refreshing until production

deployment activities complete.

42. Click Deployments => Environments

43. [Automation wait: ~3 min] Keep refreshing until staging

deployment activities complete.

44. On the ‘production’’ line, to the right, Click Open

Warning

For all GitOps mode projects, when the deployment shows

complete in the Environments page, it only means the

manifests are completely setup, the Gitlab Agent for

Kubernetes still has to �nd and deploy the changed

manifests.

 

Observation

You should see that the production environment is now the

new color.

 

Tip 

Workshop Version: v1.3.3

 

While it is not necessarily easy to observe directly from GitLab, it

is the GitLab Agent that is pulling the changes into the cluster.

You can understand more about this �ow by examining the box

‘GitLab K8s Agent Channel’ in the

GitLab K8s Agent Connections and Flows diagram.

Accomplished Outcomes

1. Update the background color of the application

2. Track the progress of the automation through the

Application Build project and

3. Through both environments of the Environment
Deployment project using the background page color.

 

http://localhost:1313/040_gitlab_gitops_via_agent/045_setup_gitops_pull_agent.html
http://localhost:1313/050_review_env_security_scanning.html
http://localhost:1313/070_architecture_patterns/gitlab-agent-connections.html

